회원 로그인 창


로그인 메뉴

따끈따끈! 신착 전자책

더보기

콘텐츠 상세보기
한국어 임베딩


한국어 임베딩 

<이기창> 저/ 감수 | 에이콘출판사

출간일
2019-12-27
파일형태
PDF
용량
52 M
지원 기기
PC 스마트폰태블릿PC
대출현황
보유2, 대출중1, 예약중0
전자책 프로그램이 정상적으로 설치가 안되시나요?예스 24
콘텐츠 소개
저자 소개
목차
한줄서평
출판사 다른 컨텐츠

콘텐츠 소개

자연어 처리 모델의 성능을 높이는 핵심 비결, 『한국어 임베딩』

임베딩(embedding)은 자연어를 숫자의 나열인 벡터로 바꾼 결과 혹은 그 일련의 과정 전체를 가리키는 용어다. 단어나 문장 각각을 벡터로 변환해 벡터 공간에 '끼워 넣는다(embed)'는 취지에서 임베딩이라는 이름이 붙었다. 컴퓨터가 자연어를 처리할 수 있게 하려면 자연어를 계산 가능한 형식인 임베딩으로 바꿔줘야 한다.

임베딩은 컴퓨터가 자연어를 이해하도록 하는 첫 관문으로 매우 중요한 기능을 한다. 자연어 처리 모델의 성능은 임베딩이 좌우한다고 해도 과언이 아니다. 이 책에서는 다양한 임베딩 기법을 일별하고 한국어 데이터 전처리, 임베딩 구축에 이르는 전 과정을 튜토리얼 방식으로 소개한다. Word2Vec 등 단어 수준 기법부터 ELMo, BERT 등 문장 수준 임베딩까지 다룬다.

저자소개

서울대학교 국어국문학과를 졸업하고 고려대학교 대학원에서 공학 석사 학위(산업경영공학)를 취득했다. 문장 범주 분류에 큰 영향을 미치는 단어들에 높은 점수를 주는 기법에 대한 논문(SCI 저널 게재)에 1저자로 참여했다. 현재 네이버에서 대화 모델을 개발하고 있다. 주요 업무는 임베딩 학습 및 구축이다. 문장 생성(text generation)에 관심이 많다. 자연어 처리를 주제로 블로그(http://ratsgo.github.io)를 운영하고 있다. 딥러닝과 자연어 처리의 무궁무진한 가능성을 믿는다.

목차

1장. 서론
1.1 임베딩이란
1.2 임베딩의 역할
1.2.1 단어/문장 간 관련도 계산
1.2.2 의미/문법 정보 함축
1.2.3 전이 학습
1.3 임베딩 기법의 역사와 종류
1.3.1 통계 기반에서 뉴럴 네트워크 기반으로
1.3.2 단어 수준에서 문장 수준으로
1.3.3 룰 → 엔드투엔드 → 프리트레인/파인 튜닝
1.3.4 임베딩의 종류와 성능
1.4 개발 환경
1.4.1 환경 소개
1.4.2 AWS 구성
1.4.3 코드 실행
1.4.4 버그 리포트 및 Q&A
1.4.5 이 책이 도움받고 있는 오픈소스들
1.5 이 책이 다루는 데이터와 주요 용어
1.6 이 장의 요약
1.7 참고 문헌

2장. 벡터가 어떻게 의미를 가지게 되는가
2.1 자연어 계산과 이해
2.2 어떤 단어가 많이 쓰였는가
2.2.1 백오브워즈 가정
2.2.2 TF-IDF
2.2.3 Deep Averaging Network
2.3 단어가 어떤 순서로 쓰였는가
2.3.1 통계 기반 언어 모델
2.3.2 뉴럴 네트워크 기반 언어 모델
2.4 어떤 단어가 같이 쓰였는가
2.4.1 분포 가정
2.4.2 분포와 의미 (1): 형태소
2.4.3 분포와 의미 (2): 품사
2.4.4 점별 상호 정보량
2.4.5 Word2Vec
2.5 이 장의 요약
2.6 참고 문헌

3장. 한국어 전처리
3.1 데이터 확보
3.1.1 한국어 위키백과
3.1.2 KorQuAD
3.1.3 네이버 영화 리뷰 말뭉치
3.1.4 전처리 완료된 데이터 다운로드
3.2 지도 학습 기반 형태소 분석
3.2.1 KoNLPy 사용법
3.2.2 KoNLPy 내 분석기별 성능 차이 분석
3.2.3 Khaiii 사용법
3.2.4 은전한닢에 사용자 사전 추가하기
3.3 비지도 학습 기반 형태소 분석
3.3.1 soynlp 형태소 분석기
3.3.2 구글 센텐스피스
3.3.3 띄어쓰기 교정
3.3.4 형태소 분석 완료된 데이터 다운로드
3.4 이 장의 요약
3.5 참고 문헌

4장. 단어 수준 임베딩
4.1 NPLM
4.1.1 모델 기본 구조
4.1.2 NPLM의 학습
4.1.3 NPLM과 의미 정보
4.2 Word2Vec
4.2.1 모델 기본 구조
4.2.2 학습 데이터 구축
4.2.3 모델 학습
4.2.4 튜토리얼
4.3 FastText
4.3.1 모델 기본 구조
4.3.2 튜토리얼
4.3.3 한글 자소와 FastText
4.4 잠재 의미 분석
4.4.1 PPMI 행렬
4.4.2 행렬 분해로 이해하는 잠재 의미 분석
4.4.3 행렬 분해로 이해하는 Word2Vec
4.4.4 튜토리얼
4.5 GloVe
4.5.1 모델 기본 구조
4.5.2 튜토리얼
4.6 Swivel
4.6.1 모델 기본 구조
4.6.2 튜토리얼
4.7 어떤 단어 임베딩을 사용할 것인가
4.7.1 단어 임베딩 다운로드
4.7.2 단어 유사도 평가
4.7.3 단어 유추 평가
4.7.4 단어 임베딩 시각화
4.8 가중 임베딩
4.8.1 모델 개요
4.8.2 모델 구현
4.8.3 튜토리얼
4.9 이 장의 요약
4.10 참고 문헌

5장. 문장 수준 임베딩
5.1 잠재 의미 분석
5.2 Doc2Vec
5.2.1 모델 개요
5.2.2 튜토리얼
5.3 잠재 디리클레 할당
5.3.1 모델 개요
5.3.2 아키텍처
5.3.3 LDA와 깁스 샘플링
5.3.4 튜토리얼
5.4 ELMo
5.4.1 문자 단위 컨볼루션 레이어
5.4.2 양방향 LSTM, 스코어 레이어
5.4.3 ELMo 레이어
5.4.4 프리트레인 튜토리얼
5.5 트랜스포머 네트워크
5.5.1 Scaled Dot-Product Attention
5.5.2 멀티헤드 어텐션
5.5.3 Position-wise Feed-Forward Networks
5.5.4 트랜스포머의 학습 전략
5.6 BERT
5.6.1 BERT, ELMo, GPT
5.6.2 프리트레인 태스크와 학습 데이터 구축
5.6.3 BERT 모델의 구조
5.6.4 프리트레인 튜토리얼
5.7 이 장의 요약
5.8 참고 문헌

6장. 임베딩 파인 튜닝
6.1 프리트레인과 파인 튜닝
6.2 분류를 위한 파이프라인 만들기
6.3 단어 임베딩 활용
6.3.1 네트워크 개요
6.3.2 네트워크 구현
6.3.3 튜토리얼
6.4 ELMo 활용
6.4.1 네트워크 개요
6.4.2 네트워크 구현
6.4.3 튜토리얼
6.5 BERT 활용
6.5.1 네트워크 개요
6.5.2 네트워크 구현
6.5.3 튜토리얼
6.6 어떤 문장 임베딩을 사용할 것인가
6.7 이 장의 요약
6.8 참고 문헌

부록
부록 A. 선형대수학 기초
1.1 벡터, 행렬 연산
1.2 내적과 공분산
1.3 내적과 사영
1.4 내적과 선형변환
1.5 행렬 분해 기반 차원 축소 (1): 주성분 분석(PCA)
1.6 행렬 분해 기반 차원 축소 (2): 특이값 분해(SVD)

부록 B. 확률론 기초
2.1 확률변수와 확률 분포
2.2 베이지안 확률론

부록 C. 뉴럴 네트워크 기초
3.1 DAG로 이해하는 뉴럴 네트워크
3.2 뉴럴 네트워크는 확률모델이다
3.3 최대우도추정과 학습 손실
3.4 그래디언트 디센트
3.5 계산 노드별 역전파
3.6 CNN과 RNN

부록 D. 국어학 기초
4.1 통사 단위
4.2 문장 유형
4.3 품사
4.4 상과 시제
4.5 주제
4.6 높임
4.7 양태
4.8 의미역
4.9 피동
4.10 사동
4.11 부정

부록 E. 참고 문헌

한줄서평

  • 10
  • 8
  • 6
  • 4
  • 2

(한글 40자이내)
리뷰쓰기
한줄 서평 리스트
평점 한줄 리뷰 작성자 작성일 추천수

등록된 서평이 없습니다.

출판사의 다른 컨텐츠