¸ñÂ÷
chapter 1 FreeMat ½ÃÀÛÇϱâ
1.1 ½ÃÀÛÇϱâ(Matlb, FreeMat, Octav, SIELAB) 11
1.2 È¸é »ç¿ë¹æ¹ý 12
1.3 ÀÔ·Â ? Ãâ·Â ¹æ¹ý 14
1.4 »ê¼ú ¿¬»êÀÚ 14
1.5 µîÈ£ ÁöÁ¤ ¿¬»êÀÚ 16
chapter 2 FreeMat ÀÚ·á ÀÔÃâ·Â Çü½Ä°ú ¸ÅÆ®·¦ ±×·¡ÇÁ
2.1 FreeMat ÀÚ·á ÀÔÃâ·Â Çü½Ä 18
2.2 FreeMat¿¡¼ ±×¸² ±×¸®±â 22
chapter 3 FreeMat ÇÁ·Î±×·¡¹Ö
3.1 ÇÁ·Î±×·¡¹ÖÀ̶õ? 31
3.2 Script File »ý¼º 33
3.3 FreeMat º¯¼ö¿Í ÇÔ¼ö 35
3.4 FreeMat ¹è¿ ¹× °è»ê 38
3.5 Á¶°Ç¹®(if statement) 40
3.6 ¼øȯ¹® 43
3.7 »ç¿ëÀÚÁ¤ÀÇ ÇÔ¼ö 45
chapter 4 FreeMat ÀÀ¿ë
4.1 ¼±Çü¿¬¸³¹æÁ¤½Ä 48
4.2 ÇÔ¼öÀÇ ±Ùã±â 51
4.3 º¸°£¹ý 54
4.4 ¼öÄ¡ ÀûºÐ¹ý 58
4.5 ¼öÄ¡ ¹ÌºÐ °è»ê¹ý 59
chapter 5 ÄÄÇ»ÅÍ¿ë ¼ö¿Í ¼ö½Ä
5.1 ÄÄÇ»ÅÍ¿ë ¼öÀÇ Ç¥Çö 64
5.2 ÄÄÇ»ÅÍÀÇ ¿ÀÂ÷ 69
chapter 6 ¹æÁ¤½ÄÀÇ ½Ç±Ù ±¸Çϱâ
6.1 °íÁ¤Á¡ ¹Ýº¹¹ý(Fixed-point Iteration Method) 80
6.2 À̺йý(Bisection Method, Iterval Having Method) 83
6.3 °¡À§Ä¡¹ý(Regula-Falsi Method) 87
6.4 Newton¡¯s Method 92
6.5 Secant Method 97
6.6 Newton-Rapson¡¯s Method 100
chapter 7 ¿¬¸³¹æÁ¤½Ä
7.1 ¼±Çü¹æÁ¤½Ä(Linear Systems) 102
7.2 Gauss Elimination Method 104
7.3 Gauss-Jordan Elimination Method 109
7.4 Inverse Matrix(G-J Elimination Method) 113
7.5 Jacobi Iterative Method 115
7.6 Gauss-Seidel Iterative Method and SOR Iterative Method 119
chapter 8 º¸°£¹ý
8.1 Linear Interpolation 125
8.2 Lagrange Interpolation 126
8.3 Newton Interpolation 131
8.4 Spline Interpolation 134
8.5 ÃÖ¼ÒÀڽ¹ý(Least square method) 142
chapter 9 ¼öÄ¡ ¹ÌºÐ°ú ÀûºÐ
9.1 ¼öÄ¡ÀûºÐ(Numerical Integration) 147
9.1.1 Á÷»ç°¢Çü ÀûºÐ¹ý(Rectangular Mathod) 148
9.1.2 »ç´Ù¸®²Ã ÀûºÐ¹ý(Trapezoidal Rule) 150
9.1.3 SimpsonÀÇ ÀûºÐ¹ý(Simpson¡¯s Rule) 153
9.1.4 Romberg Method 158
9.1.5 Gauss Integration Formula 164
9.2 ¼öÄ¡¹ÌºÐ(Numerical Differentiation) 167
chapter 10 »ó¹ÌºÐ ¹æÁ¤½ÄÀÇ Çعý
10.1 ÃʱⰪ ¹®Á¦(Intial Value Problem, IVP) 170
10.1.1 Euler Method Çعý 170
10.1.2 ¼öÁ¤ Euler¹ý(Improved Euler Method) 174
10.1.3 Runge-KuttaÀÇ ¹æ¹ý 177
10.2 °æ°è°ª ¹®Á¦(Boundary Value Problem) 182
APPENDIX
A.1 Taylor Series 191
A.2 Tridigonal Matrix 193